Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission.
نویسندگان
چکیده
Many anesthetics evoke electroencephalogram (EEG) burst suppression activity in humans and animals during anesthesia, and the mechanisms underlying this activity remain unclear. The present study used a rat neocortical brain slice EEG preparation to investigate excitatory synaptic mechanisms underlying anesthetic-induced burst suppression activity. Excitatory synaptic mechanisms associated with burst suppression activity were probed using glutamate receptor antagonists (CNQX and APV), GABA receptor antagonists, and simultaneous whole cell patch clamp and microelectrode EEG recordings. Clinically relevant concentrations of thiopental (50--70 microM), propofol (5--10 microM) or isoflurane (0.7--2.1 vol%, 0.5--1.5 rat minimum aveolar concentration (MAC), 200--700 microM) evoked delta slow wave activity and burst suppression EEG patterns similar to in vivo responses. These effects on EEG signals were blocked by glutamate receptor antagonists CNQX (8.6 microM) or APV (50 microM). Depolarizing intracellular bursts (amplitude=34.7+/-4.5 mV; half width=132+/-60 ms) always accompanied EEG bursts, and hyperpolarization increased intracellular burst amplitudes. Barrages of glutamate-mediated excitatory events initiated EEG bursting activity. Glutamate-mediated excitatory postsynaptic currents were significantly depressed by higher anesthetic concentrations that depressed burst suppression EEG activity. A GABA(A) agonist produced a similar EEG effect to the anesthetics. It appears that anesthetic effects at both glutamate and GABA synapses contribute to EEG patterns seen during anesthesia.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملP24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملSynaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum.
Endocannabinoids mediate retrograde signaling and modulate synaptic transmission in various regions of the CNS. Depolarization-induced elevation of intracellular Ca2+ concentration causes endocannabinoid-mediated suppression of excitatory/inhibitory synaptic transmission. Activation of G(q/11)-coupled receptors including group I metabotropic glutamate receptors (mGluRs) also causes endocannabin...
متن کاملSelective Gating of Glutamatergic Inputs to Excitatory Neurons of Amygdala by Presynaptic GABAb Receptor
GABAb receptor (GABAbR)-mediated suppression of glutamate release is critical for limiting glutamatergic transmission across the central nervous system (CNS). Here we show that, upon tetanic stimulation of afferents to lateral amygdala, presynaptic GABAbR-mediated inhibition only occurs in glutamatergic inputs to principle neurons (PNs), not to interneurons (INs), despite the presence of GABAbR...
متن کاملEffect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures.
Nitrous oxide (N2O; laughing gas) has been a widely used anesthetic/analgesic since the 19th century, although its cellular mechanism of action is not understood. Here we characterize the effects of N2O on excitatory and inhibitory synaptic transmission in microcultures of rat hippocampal neurons, a preparation in which anesthetic effects on monosynaptic communication can be examined in a setti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2005